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Lattice simulations with magnetic fields

1. Magnetic Field Induced Conductivity [generation of the electric
current of quarks along the magnetic field]

2. Chiral symmetry breaking
3. Magnetization of the vacuum

4. Electric dipole moment of quark along the direction of the
magnetic field

5. Quark mass dependence of CME



Magnetic fields in & Bntral llisions

Reaction

/ Two very big
currents
produce a very
big magnetic
field

“Instanton’-

X (defines ¥y)

The medium is fil®T by electrically charged particles

Large orbital momentum, perpendicular to the reaction plane

Large magnetic field along the direction of the orbital momentum



3D time slices of topological charge density,
lattice calculations
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Topological charge density after
vacuum cooling Fractal topological charge density

without vacuum cooling



We consider very strong magnetic
fields,
Magnetic forces are of the order of
strong interaction forces

2
eB = Njyep
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We expect the influence of magnetic field on
strong interaction physics



Magnetic forces are of the order of
strong interaction forces

2
eB =~ Nyqp

We expect the influence of magnetic field on
strong interaction physics

The effects are nonperturbative,

and we use

Lattice Calculations



Virtual quark loops are
absent (quenching)
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External quark

Virtual gluon

We calculate <y 'y > I'=1,7 .0,

in the external magnetic field and in the
presence of the vacuum gluon fields We
consider SU(2) gauge fields and
quenching approximation
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Quenched vacuum, overlap Dirac
operator, external magnetic field
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Density of the electric charge vs. magnetic field,
3D time slices




Electric charge density,
effect of magnetic field increasing




Magnetic Field Induced Conductivity of
the Vacuum

Qualitative definition of conductivity, O
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Magnetic Field Induced Conductivity
of the Vacuum
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- Conductivity (Kubo formula)
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Magnetic Field Induced Conductivity
of the Vacuum

~ pi (0)
A

0 - Conductivity (Kubo formula)

For weak constant electric field

< ji >= JikEk



Calculations in SU(2) gluodynamics

(q(z)viq (z) q(y)viqa(y))
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We use overlap operator + Shifted Unitary Minimal Residue Method
(Borici and Allcoci (2006)) to obtain fermion propagator
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Calculations in SU(2) gluodynamics
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Calculations in SU(2) gluodynamics,

conductivity along magnetic field at
=0
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Calculations in SU(2) gluodynamics,
conductivity along magnetic field at
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Calculations in SU(2) gluodynamics,

conductivity along magnetic field at
=0, T>0
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Calculations in SU(2) gluodynamics,
conductivity along magnetic field at
=0, variation of the quark mass
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2. Chiral condensate in QCD

L=—<yy >

2 2
m,f;=m, <Yy >



> GeV®

Chiral condensate vs. field strength,
SU(2) gluodynamics
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We are in agreement with the chiral perturbation
theory: the chiral condensate is a linear function of

the strength of the magnetic field!




Chiral condensate vs. field strength,
SU(3) gluodynamics
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3. Magnetization of the vacuum
as a function of the magnetic field
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Spins of virtual quarks turn
parallel to the magnetic field
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4. Generation

of the anomalous quark electric dipole moment
along the axis of magnetic field

N\ Large correlation between square of the electric dipole moment
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5. Electric currents in
instanton field+magnetic field (CME)
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Instanton-like configuration:
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The fluctuations of the chirality p. =y

<j02> +<j32> A
x
0 0.5 1 1.5
q B, GeV?

and the fluctuations of the longitudinal
electric current as a function of the

magnetic field.

The squared components of the
electric current in a 12-plane. The
upper sheet represents the spatial
distribution of the longitudinal
current, the lower sheet
corresponds to the transverse
current.
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Conclusions

1. We observe that in the confinement phase the external
magnetic field induces nonzero electric conductivity along the
direction of the magnetic field, transforming the system from
an insulator into an anisotropic conductor (arXiv:1003.2180).

« 2. In the deconfinement phase the conductivity does not
exhibit any sizable dependence on the magnetic field
(arXiv:1003.2180).

« 3. The conductivity is weaker for heavy quarks, thus it is
interesting to measure experimentally the charge asymmetry
for S and C quarks.



Conclusions

4. \We observe that the chiral condensate is proportional to
the strength of the magnetic field, the coefficient of the
proportionality agrees with Chiral Perturbation Theory.
Microscopic mechanism for the chiral enhancement is the
localization of fermion modes in the vacuum
(arXiv:0812.1740, Phys.Lett. B 682:484-489,2010 ).

« 5. The calculated vacuum magnetization is in a qualitative
agreement with model calculations (arXiv:0906.0488,
Nucl.Phys. B 826 (2010) 313).

6. We observe very large correlation between electric dipole
moment of quark and chirality (arXiv:0909.2350
Phys.Rev.D81:036007,2010).
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Chiral Magnetic Effect on the lattice, numerical
results nearzero
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Chiral Magnetic Effect on the lattice, numerical

results
nearlc and nearzero
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Chiral Magnetic Effect,
EXPERIMENT VS LATTICE DATA (Au+Au)
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Chiral Magnetic Effect,
EXPERIMENT VS LATTICE DATA
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Lessons from computer calculations

1. In the vacuum of QCD we observe the charge separation in the strong magnetic
field, the topological structure is complicated

2. We can explain the experimental data, but the growth of asymmetry is due
to the kinematical factor, and is not related to the growth of the magnetic field
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3. The larger is the quark mass t 70 01 0203 04 05 as *’ect, thus it is important to
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measure the asymmetry for mesons containing S and C quarks



Results arXiv:0909.1808

1. We obsreve signatures of the Chiral Magnetic Effect, but the
physics may differ from the model of Kharzeev, McLerran and
Warringa (arXiv:0907.0494, Phys.Rev.D79:106003,2009 )

2. We observe that the chiral condensate is proportional to the
strength of the magnetic field, the coefficient of the
proportionality agrees with Chiral Perturbation Theory.
Microscopic mechanism for the chiral enhancement is the
localization of fermion modes in the vacuum (arXiv:0812.1740,
Phys.Lett. B682(2010)484)

3. The calculated vacuum magnetization is in a qualitative
agreement with model calculations (arXiv:0906.0488, Nucl.Phys. B
826 (2010) 313)

4. We observe very large correlation between electric dipole
moment of quark and chirality (arXiv:0909.2350 )



